LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034			
B.Sc. DEGREE EXAMINATION – MATHEMATICS			
FIFTH SEMESTER – NOVEMBER 2013 MT 5407/5404 - FORMAL LANGUAGES AND AUTOMATA			
Date : 18/11/2013 Dept. No. Max. : 100 Marks Time : 9:00 - 12:00			
PART - A			
ANSWER ALL QUESTIONS $10 \times 2 = 20$			
1) Define context free languages.			
2) Give an example for an regular language.			
3) Show that every context-free language is a context-sensitive language.			
4) Write a grammar to accept $L = \{a^n / n \ge 1\}$.			
5) Define concatenation of two languages.			
6) Write the CNF form.			
7) Define left most derivation.			
8) Define ambiguous grammar and give an example.			
9) Define derivation trees.			
10) Define the language accepted by an NFA.			
PART - B			
ANSWER ANY FIVE QUESTIONS $5 \ge 8 = 40$			
11) Construct a finite automaton which can test whether a given positive integer is			
divisible by 5.			
12) Write a grammar to $L = \{a^n b^n / n \ge 1\}$.			
13) Write about Backus Naur Form.			
14) Find the CNF grammar to $S \rightarrow aSa/, bSb/aa/bb/a/b$.			
15) Eliminate unit productions in the grammar with production rules			
$S \to AB, A \to a, B \to C/b, C \to D, D \to E/bC, E \to d/Ab$.			
16)Write about Chomskey hierarchy.			
17) Construct the left most and right most derivations and derivation trees for the			
following grammar $S \rightarrow S + S/S * S/a/b/c$ which accepts the			
string $a * b + b * c + c * a$.			

18) Construct a DFA to accept the set of all strings over {0, 1} ending with 00.

ANSWER ANY TWO QUESTION.

19 a) Construct a grammar to generate $L = \{a^n b^n c^n / n \ge 1\}$.

b) Construct a grammar to generate the set of all palindromes over {a, b}. (14+6) 20)a) Reduce the grammar to CNF given that $S \rightarrow S/[S \supset S]/p/q$ are the

productions of G.

b) Prove that CFL is closed under concatenation. (14+6)

21) Find the Greibach normal form grammar equivalent to the following CFG;

 $S \rightarrow AA/0, A \rightarrow SS/1$.

22)a)Construct a DFA with minimum states for the following NFA.

	a	b
\rightarrow q_0	$\{q_1\}$	¢
q_1	$\{q_1\}$	$\{q_2\}$
*	¢	$\{q_2\}$
q_2		

b) Consider a grammar G = (V, T, P, S) with $P = \{S \rightarrow aA, A \rightarrow aA/bS/a\}$. Find an

NFA to accept L(G).

(12+8)