LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIFTH SEMESTER - NOVEMBER 2013
MT 5407/5404-FORMAL LANGUAGES AND AUTOMATA

Dept. No. \square Max. : 100 Marks

PART - A

ANSWER ALL QUESTIONS

1) Define context free languages.
2) Give an example for an regular language.
3) Show that every context-free language is a context-sensitive language.
4) Write a grammar to accept $L=\left\{a^{n} / n \geq 1\right\}$.
5) Define concatenation of two languages.
6) Write the CNF form.
7) Define left most derivation.
8) Define ambiguous grammar and give an example.
9) Define derivation trees.
10) Define the language accepted by an NFA.

PART - B

ANSWER ANY FIVE QUESTIONS

11) Construct a finite automaton which can test whether a given positive integer is divisible by 5 .
12) Write a grammar to $L=\left\{a^{n} b^{n} / n \geq 1\right\}$.
13) Write about Backus Naur Form.
14) Find the CNF grammar to $S \rightarrow a S a /, b S b / a a / b b / a / b$.
15) Eliminate unit productions in the grammar with production rules

$$
S \rightarrow A B, A \rightarrow a, B \rightarrow C / b, C \rightarrow D, D \rightarrow E / b C, E \rightarrow d / A b .
$$

16)Write about Chomskey hierarchy.
17) Construct the left most and right most derivations and derivation trees for the following grammar $S \rightarrow S+S / S^{*} S / a / b / c$ which accepts the string $a^{*} b+b^{*} c+c^{*} a$.
18) Construct a DFA to accept the set of all strings over $\{0,1\}$ ending with 00.
PART - C

ANSWER ANY TWO QUESTION.

19 a) Construct a grammar to generate $L=\left\{a^{n} b^{n} c^{n} / n \geq 1\right\}$.
b) Construct a grammar to generate the set of all palindromes over $\{\mathbf{a}, \mathbf{b}\}$.
20)a) Reduce the grammar to CNF given that $S \rightarrow S /[S \supset S] / p / q$ are the productions of \mathbf{G}.
b) Prove that CFL is closed under concatenation.
21) Find the Greibach normal form grammar equivalent to the following CFG;
$S \rightarrow A A / 0, A \rightarrow S S / 1$.
22)a)Construct a DFA with minimum states for the following NFA.

	\mathbf{a}	\mathbf{b}
$\overrightarrow{q_{0}}$	$\left\{q_{1}\right\}$	$\boldsymbol{\phi}$
q_{1}	$\left\{q_{1}\right\}$	$\left\{q_{2}\right\}$
$*$	ϕ	$\left\{q_{2}\right\}$
q_{2}		

b) Consider a grammar $\mathbf{G}=(\mathbf{V}, \mathbf{T}, \mathbf{P}, \mathbf{S})$ with $P=\{S \rightarrow a A, A \rightarrow a A / b S / a\}$.Find an NFA to accept $L(G)$.

